3.519 \(\int \frac {x^8}{(a+b x^2)^{9/2}} \, dx\)

Optimal. Leaf size=106 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{b^{9/2}}-\frac {x}{b^4 \sqrt {a+b x^2}}-\frac {x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac {x^7}{7 b \left (a+b x^2\right )^{7/2}} \]

[Out]

-1/7*x^7/b/(b*x^2+a)^(7/2)-1/5*x^5/b^2/(b*x^2+a)^(5/2)-1/3*x^3/b^3/(b*x^2+a)^(3/2)+arctanh(x*b^(1/2)/(b*x^2+a)
^(1/2))/b^(9/2)-x/b^4/(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {288, 217, 206} \[ -\frac {x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac {x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {x}{b^4 \sqrt {a+b x^2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{b^{9/2}}-\frac {x^7}{7 b \left (a+b x^2\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^8/(a + b*x^2)^(9/2),x]

[Out]

-x^7/(7*b*(a + b*x^2)^(7/2)) - x^5/(5*b^2*(a + b*x^2)^(5/2)) - x^3/(3*b^3*(a + b*x^2)^(3/2)) - x/(b^4*Sqrt[a +
 b*x^2]) + ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]]/b^(9/2)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {x^8}{\left (a+b x^2\right )^{9/2}} \, dx &=-\frac {x^7}{7 b \left (a+b x^2\right )^{7/2}}+\frac {\int \frac {x^6}{\left (a+b x^2\right )^{7/2}} \, dx}{b}\\ &=-\frac {x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac {x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}+\frac {\int \frac {x^4}{\left (a+b x^2\right )^{5/2}} \, dx}{b^2}\\ &=-\frac {x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac {x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac {x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}+\frac {\int \frac {x^2}{\left (a+b x^2\right )^{3/2}} \, dx}{b^3}\\ &=-\frac {x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac {x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac {x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {x}{b^4 \sqrt {a+b x^2}}+\frac {\int \frac {1}{\sqrt {a+b x^2}} \, dx}{b^4}\\ &=-\frac {x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac {x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac {x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {x}{b^4 \sqrt {a+b x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{b^4}\\ &=-\frac {x^7}{7 b \left (a+b x^2\right )^{7/2}}-\frac {x^5}{5 b^2 \left (a+b x^2\right )^{5/2}}-\frac {x^3}{3 b^3 \left (a+b x^2\right )^{3/2}}-\frac {x}{b^4 \sqrt {a+b x^2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )}{b^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 101, normalized size = 0.95 \[ \frac {\sqrt {a} \sqrt {\frac {b x^2}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a}}\right )}{b^{9/2} \sqrt {a+b x^2}}-\frac {x \left (105 a^3+350 a^2 b x^2+406 a b^2 x^4+176 b^3 x^6\right )}{105 b^4 \left (a+b x^2\right )^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^8/(a + b*x^2)^(9/2),x]

[Out]

-1/105*(x*(105*a^3 + 350*a^2*b*x^2 + 406*a*b^2*x^4 + 176*b^3*x^6))/(b^4*(a + b*x^2)^(7/2)) + (Sqrt[a]*Sqrt[1 +
 (b*x^2)/a]*ArcSinh[(Sqrt[b]*x)/Sqrt[a]])/(b^(9/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.96, size = 331, normalized size = 3.12 \[ \left [\frac {105 \, {\left (b^{4} x^{8} + 4 \, a b^{3} x^{6} + 6 \, a^{2} b^{2} x^{4} + 4 \, a^{3} b x^{2} + a^{4}\right )} \sqrt {b} \log \left (-2 \, b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right ) - 2 \, {\left (176 \, b^{4} x^{7} + 406 \, a b^{3} x^{5} + 350 \, a^{2} b^{2} x^{3} + 105 \, a^{3} b x\right )} \sqrt {b x^{2} + a}}{210 \, {\left (b^{9} x^{8} + 4 \, a b^{8} x^{6} + 6 \, a^{2} b^{7} x^{4} + 4 \, a^{3} b^{6} x^{2} + a^{4} b^{5}\right )}}, -\frac {105 \, {\left (b^{4} x^{8} + 4 \, a b^{3} x^{6} + 6 \, a^{2} b^{2} x^{4} + 4 \, a^{3} b x^{2} + a^{4}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right ) + {\left (176 \, b^{4} x^{7} + 406 \, a b^{3} x^{5} + 350 \, a^{2} b^{2} x^{3} + 105 \, a^{3} b x\right )} \sqrt {b x^{2} + a}}{105 \, {\left (b^{9} x^{8} + 4 \, a b^{8} x^{6} + 6 \, a^{2} b^{7} x^{4} + 4 \, a^{3} b^{6} x^{2} + a^{4} b^{5}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^2+a)^(9/2),x, algorithm="fricas")

[Out]

[1/210*(105*(b^4*x^8 + 4*a*b^3*x^6 + 6*a^2*b^2*x^4 + 4*a^3*b*x^2 + a^4)*sqrt(b)*log(-2*b*x^2 - 2*sqrt(b*x^2 +
a)*sqrt(b)*x - a) - 2*(176*b^4*x^7 + 406*a*b^3*x^5 + 350*a^2*b^2*x^3 + 105*a^3*b*x)*sqrt(b*x^2 + a))/(b^9*x^8
+ 4*a*b^8*x^6 + 6*a^2*b^7*x^4 + 4*a^3*b^6*x^2 + a^4*b^5), -1/105*(105*(b^4*x^8 + 4*a*b^3*x^6 + 6*a^2*b^2*x^4 +
 4*a^3*b*x^2 + a^4)*sqrt(-b)*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) + (176*b^4*x^7 + 406*a*b^3*x^5 + 350*a^2*b^2*x
^3 + 105*a^3*b*x)*sqrt(b*x^2 + a))/(b^9*x^8 + 4*a*b^8*x^6 + 6*a^2*b^7*x^4 + 4*a^3*b^6*x^2 + a^4*b^5)]

________________________________________________________________________________________

giac [A]  time = 1.20, size = 78, normalized size = 0.74 \[ -\frac {{\left (2 \, {\left (x^{2} {\left (\frac {88 \, x^{2}}{b} + \frac {203 \, a}{b^{2}}\right )} + \frac {175 \, a^{2}}{b^{3}}\right )} x^{2} + \frac {105 \, a^{3}}{b^{4}}\right )} x}{105 \, {\left (b x^{2} + a\right )}^{\frac {7}{2}}} - \frac {\log \left ({\left | -\sqrt {b} x + \sqrt {b x^{2} + a} \right |}\right )}{b^{\frac {9}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^2+a)^(9/2),x, algorithm="giac")

[Out]

-1/105*(2*(x^2*(88*x^2/b + 203*a/b^2) + 175*a^2/b^3)*x^2 + 105*a^3/b^4)*x/(b*x^2 + a)^(7/2) - log(abs(-sqrt(b)
*x + sqrt(b*x^2 + a)))/b^(9/2)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 88, normalized size = 0.83 \[ -\frac {x^{7}}{7 \left (b \,x^{2}+a \right )^{\frac {7}{2}} b}-\frac {x^{5}}{5 \left (b \,x^{2}+a \right )^{\frac {5}{2}} b^{2}}-\frac {x^{3}}{3 \left (b \,x^{2}+a \right )^{\frac {3}{2}} b^{3}}-\frac {x}{\sqrt {b \,x^{2}+a}\, b^{4}}+\frac {\ln \left (\sqrt {b}\, x +\sqrt {b \,x^{2}+a}\right )}{b^{\frac {9}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(b*x^2+a)^(9/2),x)

[Out]

-1/7*x^7/b/(b*x^2+a)^(7/2)-1/5*x^5/b^2/(b*x^2+a)^(5/2)-1/3*x^3/b^3/(b*x^2+a)^(3/2)-x/b^4/(b*x^2+a)^(1/2)+1/b^(
9/2)*ln(b^(1/2)*x+(b*x^2+a)^(1/2))

________________________________________________________________________________________

maxima [B]  time = 1.67, size = 255, normalized size = 2.41 \[ -\frac {1}{35} \, {\left (\frac {35 \, x^{6}}{{\left (b x^{2} + a\right )}^{\frac {7}{2}} b} + \frac {70 \, a x^{4}}{{\left (b x^{2} + a\right )}^{\frac {7}{2}} b^{2}} + \frac {56 \, a^{2} x^{2}}{{\left (b x^{2} + a\right )}^{\frac {7}{2}} b^{3}} + \frac {16 \, a^{3}}{{\left (b x^{2} + a\right )}^{\frac {7}{2}} b^{4}}\right )} x - \frac {x {\left (\frac {15 \, x^{4}}{{\left (b x^{2} + a\right )}^{\frac {5}{2}} b} + \frac {20 \, a x^{2}}{{\left (b x^{2} + a\right )}^{\frac {5}{2}} b^{2}} + \frac {8 \, a^{2}}{{\left (b x^{2} + a\right )}^{\frac {5}{2}} b^{3}}\right )}}{15 \, b} - \frac {x {\left (\frac {3 \, x^{2}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} b} + \frac {2 \, a}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} b^{2}}\right )}}{3 \, b^{2}} - \frac {a x^{3}}{{\left (b x^{2} + a\right )}^{\frac {5}{2}} b^{3}} + \frac {139 \, x}{105 \, \sqrt {b x^{2} + a} b^{4}} + \frac {17 \, a x}{105 \, {\left (b x^{2} + a\right )}^{\frac {3}{2}} b^{4}} - \frac {29 \, a^{2} x}{35 \, {\left (b x^{2} + a\right )}^{\frac {5}{2}} b^{4}} + \frac {\operatorname {arsinh}\left (\frac {b x}{\sqrt {a b}}\right )}{b^{\frac {9}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(b*x^2+a)^(9/2),x, algorithm="maxima")

[Out]

-1/35*(35*x^6/((b*x^2 + a)^(7/2)*b) + 70*a*x^4/((b*x^2 + a)^(7/2)*b^2) + 56*a^2*x^2/((b*x^2 + a)^(7/2)*b^3) +
16*a^3/((b*x^2 + a)^(7/2)*b^4))*x - 1/15*x*(15*x^4/((b*x^2 + a)^(5/2)*b) + 20*a*x^2/((b*x^2 + a)^(5/2)*b^2) +
8*a^2/((b*x^2 + a)^(5/2)*b^3))/b - 1/3*x*(3*x^2/((b*x^2 + a)^(3/2)*b) + 2*a/((b*x^2 + a)^(3/2)*b^2))/b^2 - a*x
^3/((b*x^2 + a)^(5/2)*b^3) + 139/105*x/(sqrt(b*x^2 + a)*b^4) + 17/105*a*x/((b*x^2 + a)^(3/2)*b^4) - 29/35*a^2*
x/((b*x^2 + a)^(5/2)*b^4) + arcsinh(b*x/sqrt(a*b))/b^(9/2)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^8}{{\left (b\,x^2+a\right )}^{9/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(a + b*x^2)^(9/2),x)

[Out]

int(x^8/(a + b*x^2)^(9/2), x)

________________________________________________________________________________________

sympy [B]  time = 9.04, size = 2980, normalized size = 28.11 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(b*x**2+a)**(9/2),x)

[Out]

105*a**(205/2)*b**45*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a)
+ 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 210
0*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**
(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 630*a**(20
3/2)*b**46*x**2*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630
*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**
(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/
2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 1575*a**(201/2)
*b**47*x**4*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**
(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199
/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b
**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 2100*a**(199/2)*b**
48*x**6*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203
/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*
b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(1
09/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 1575*a**(197/2)*b**49*x
**8*sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*
b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(
105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2
)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 630*a**(195/2)*b**50*x**10*
sqrt(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(
101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/
2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x*
*10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) + 105*a**(193/2)*b**51*x**12*sqrt
(1 + b*x**2/a)*asinh(sqrt(b)*x/sqrt(a))/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/
2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x
**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*
sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) - 105*a**102*b**(91/2)*x/(105*a**(205
/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103
/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*
x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12
*sqrt(1 + b*x**2/a)) - 665*a**101*b**(93/2)*x**3/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)
*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**
(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/
2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) - 1771*a**100*b**(95/2)*x**5
/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(2
01/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2
)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**
(111/2)*x**12*sqrt(1 + b*x**2/a)) - 2549*a**99*b**(97/2)*x**7/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 6
30*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a
**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(19
5/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) - 2096*a**98*b*
*(99/2)*x**9/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a)
+ 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 15
75*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a*
*(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) - 934*a**97*b**(101/2)*x**11/(105*a**(205/2)*b**(99/2)*sqrt(1 +
b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**
2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 + b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a)
 + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x**2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a)) -
176*a**96*b**(103/2)*x**13/(105*a**(205/2)*b**(99/2)*sqrt(1 + b*x**2/a) + 630*a**(203/2)*b**(101/2)*x**2*sqrt(
1 + b*x**2/a) + 1575*a**(201/2)*b**(103/2)*x**4*sqrt(1 + b*x**2/a) + 2100*a**(199/2)*b**(105/2)*x**6*sqrt(1 +
b*x**2/a) + 1575*a**(197/2)*b**(107/2)*x**8*sqrt(1 + b*x**2/a) + 630*a**(195/2)*b**(109/2)*x**10*sqrt(1 + b*x*
*2/a) + 105*a**(193/2)*b**(111/2)*x**12*sqrt(1 + b*x**2/a))

________________________________________________________________________________________